How to speed up this code consisting of 6 nested FOR loops?
1 view (last 30 days)
Show older comments
Hi All,
I am trying to speed up the code below which consists of 6 nested FOR loops.
The purpose of this code is to fill a large, sparse matrix A with ones, and a large vector b with elements from a matrix dd of size TxTxN.
I have access to the Parallel Computing Toolbox, and ultimately this code will run on a cluster.
Any comments/suggestions would be greatly appreciated.
N= big number (e.g. 10000)
T=24;
A=sparse(N*T*(T+1)/2,(N-1)*T+T); %matrix to be filled
b=sparse(N*T*(T+1)/2,1); %vector to be filled
tempT = (T+1)*T/2; % constant used in the loop
for j=1:N
for t1=1:T
for t2=t1:T
for t3=1:t2-t1+1
rw = (j-1)*tempT + (t1-1)*(T-t1/2)+t2;
cl = (j-1)*T+t1-1+t3;
A(rw,cl) = 1;
for t4=t1:t2
for t5=t4:t2
b(rw) = b(rw) + dd(t4,t5,j); % dd is given, size(dd)=TxTxN
end
end
end
end
end
end
An earlier discussion on a simplified version of this with only 3 nested loops can be found here: http://www.mathworks.com/matlabcentral/answers/52005-how-to-transform-these-three-nested-for-loops-into-a-parfor-loop
8 Comments
Accepted Answer
Matt J
on 30 Oct 2012
Edited: Matt J
on 30 Oct 2012
Here's one proposal,
N=1e4;
T=24;
%dd=rand(T,T,N); %fake
tempT = (T+1)*T/2;
[T1,T2,T3]=ndgrid(1:T,1:T,1:T);
idx = (T2>=T1) & (T3<=T2-T1+1);
T1=T1(idx);
T2=T2(idx);
T3=T3(idx);
nt=numel(T1);
%Make row/col data
RW=(T1-1).*(T-T1/2)+T2;
CL=T1-1+T3;
RW=bsxfun(@plus,RW,(0:N-1)*tempT);
CL=bsxfun(@plus,CL,(0:N-1)*T);
%For building b
Z=zeros(nt,T^2);
for ii=1:nt % A very small loop, no need to optimize
[T4,T5]=ndgrid(T1(ii):T2(ii),T1(ii):T2(ii));
idx=T5>=T4;
T4=T4(idx);
T5=T5(idx);
ind=sub2ind([T,T],T4,T5);
Z(ii,ind)=1;
end
ddd=Z*reshape(dd,[],N);
A=sparse(RW,CL,1, N*T*(T+1)/2,N*T);
b=sparse(RW(:),1,ddd(:),N*T*(T+1)/2,1);
4 Comments
Matt J
on 1 Nov 2012
The values I get for max(b1-b2) are tiny ones on the order of 1e-13. This is easily attributable to floating point precision issues. Remember, the two approaches are not adding up the numbers in the same order. Are you not getting similarly small values?
A stronger check is to look at the percent error, for which I also get tiny values:
>> percentError = full( sum(abs(b1-b2))/sum(abs(b1))*100 )
percentError =
2.5104e-14
More Answers (0)
See Also
Categories
Find more on Number Theory in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!