Fixed point to float point conversion of 16 point ifft
1 view (last 30 days)
Show older comments
A 16 point ifft Embedded matlab code is to be converted from floating point to fix point for cosimualtion of on FPGA. as is given below in snapshot. Input from Qam16 is -3,-1,0,1,3, real and imaginary.Which i have converted to int16 .Now in Embedded matlab all variables are specified for fixed-point operation using "mathfi" as given in code.But the resultant appearing after is unexpected as highlighted in snapshot.Resultant is only fractional part and very minimum.
Kindly help me solve this issue.
Embedded matlab code is also given below.
function [W,T] = iffxxtt(x,y)
%#eml
X = getfi(.0625,1, 16, 16);
C = getfi(.7071,1, 16, 16);
D = getfi(.9239,1, 16, 16);
E = getfi(.3827,1, 16, 16);
first=getfi([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],1, 16,16);
ifirst=getfi([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],1, 16, 16);
first1=getfi([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],1,16, 16);
ifirst1=getfi([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],1, 16, 16);
first2=getfi([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],1, 16, 16);
ifirst2=getfi([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],1, 16, 16);
first3=getfi([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],1, 16, 16);
ifirst3=getfi([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],1, 16, 16);
Ar=getfi([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],1, 16, 16);
Ai=getfi([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],1, 16,16);
Ar=x;
Ai=y;
for i=1:8
first(i)=Ar(i)+Ar(i+8);
ifirst(i)=Ai(i)+Ai(i+8);
first(i+8)=Ar(i) - Ar(i+8);
ifirst(i+8)=Ai(i) - Ai(i+8);
end
Ar1=first;
Ai1=ifirst;
for i=1:4
first1(i)=Ar1(i)+Ar1(i+4);
ifirst1(i)=Ai1(i)+Ai1(i+4);
first1(i+4)= Ar1(i)-Ar1(4+i);
ifirst1(i+4)=Ai1(i)-Ai1(4+i);
end
for i=9:12
first1(i)=(Ar1(i)-Ai1(i+4));
ifirst1(i)=(Ai1(i)+Ar1(i+4));
first1(i+4)=(Ai1(4+i) + Ar1(i));
ifirst1(i+4)=(-Ar1(4+i) + Ai1(i));
end
Ar2=first1;
Ai2=ifirst1;
for i=1:2
first2(i)=Ar2(i)+Ar2(i+2);
ifirst2(i)=Ai2(i)+Ai2(i+2);
first2(i+2)= Ar2(i)-Ar2(2+i);
ifirst2(i+2)=Ai2(i)-Ai2(2+i);
first2(i+4)=-(-Ar2(i+4)+Ai2(i+6));
ifirst2(i+4)=Ai2(i+4)+Ar2(i+6);
first2(i+6)=(Ai2(6+i) + Ar2(i+4));
ifirst2(i+6)=-Ar2(6+i) + Ai2(i+4);
end
for i=9:10
first2(i)=Ar2(i)+C*Ar2(i+2)-C*Ai2(i+2);
ifirst2(i)=(Ai2(i)+C*Ar2(i+2)+C*Ai2(i+2));
first2(i+2)=Ar2(i)-C*Ar2(i+2)+C*Ai2(i+2);
ifirst2(i+2)=(Ai2(i)-C*Ar2(i+2)-C*Ai2(i+2));
end
for i=13:14
first2(i)=Ar2(i)-C*Ar2(i+2)-C*Ai2(i+2);
ifirst2(i)=Ai2(i)+C*Ar2(i+2)-C*Ai2(i+2);
first2(i+2)=Ar2(i)+C*Ar2(i+2)+C*Ai2(i+2);
ifirst2(i+2)=Ai2(i)-C*Ar2(i+2)+C*Ai2(i+2);
end
Ar3=first2;
Ai3=ifirst2;
i=1;
first3(i)=Ar3(i)+Ar3(i+1);
ifirst3(i)=Ai3(i)+Ai3(i+1);
first3(i+1)= Ar3(i)-Ar3(1+i);
ifirst3(i+1)=Ai3(i)-Ai3(1+i);
first3(i+2)=-(-Ar3(i+2)+Ai3(i+3));
ifirst3(i+2)=Ai3(i+2)+Ar3(i+3);
first3(i+3)=(Ai3(3+i) + Ar3(i+2));
ifirst3(i+3)=-Ar3(3+i) + Ai3(i+2);
first3(i+4)=Ar3(i+4)+C*Ar3(i+5)-C*Ai3(i+5);
ifirst3(i+4)=(Ai3(i+4)+C*Ar3(i+5)+C*Ai3(i+5));
first3(i+5)=Ar3(i+4)-C*Ar3(i+5)+C*Ai3(i+5);
ifirst3(i+5)=(Ai3(i+4)-C*Ar3(i+5)-C*Ai3(i+5));
first3(i+6)=Ar3(i+6)-C*Ar3(i+7)-C*Ai3(i+7);
ifirst3(i+6)=Ai3(i+6)+C*Ar3(i+7)-C*Ai3(i+7);
first3(i+7)=(Ar3(i+6)+C*Ar3(i+7)+C*Ai3(i+7));
ifirst3(i+7)=(Ai3(i+6)-C*Ar3(i+7)+C*Ai3(i+7));
i=9;
first3(i)=Ar3(i)+D*Ar3(i+1)-E*Ai3(i+1);
ifirst3(i)=(Ai3(i)+E*Ar3(i+1)+D*Ai3(i+1));
first3(i+1)=Ar3(i)-D*Ar3(i+1)+E*Ai3(i+1);
ifirst3(i+1)=(Ai3(i)-E*Ar3(i+1)-D*Ai3(i+1));
first3(i+2)=Ar3(i+2)-E*Ar3(i+3)-D*Ai3(i+3);
ifirst3(i+2)=Ai3(i+2)+D*Ar3(i+3)-E*Ai3(i+3);
first3(i+3)=Ar3(i+2)+E*Ar3(i+3)+D*Ai3(i+3);
ifirst3(i+3)=Ai3(i+2)-D*Ar3(i+3)+E*Ai3(i+3);
first3(i+4)=Ar3(i+4)+E*Ar3(i+5)-D*Ai3(i+5);
ifirst3(i+4)=(Ai3(i+4)+D*Ar3(i+5)+E*Ai3(i+5));
first3(i+5)=Ar3(i+4)-E*Ar3(i+5)+D*Ai3(i+5);
ifirst3(i+5)=(Ai3(i+4)-D*Ar3(i+5)-E*Ai3(i+5));
first3(i+6)=Ar3(i+6)-D*Ar3(i+7)-E*Ai3(i+7);
ifirst3(i+6)=Ai3(i+6)+E*Ar3(i+7)-D*Ai3(i+7);
first3(i+7)=Ar3(i+6)+D*Ar3(i+7)+E*Ai3(i+7);
ifirst3(i+7)=Ai3(i+6)-E*Ar3(i+7)+D*Ai3(i+7);
W = [first3(1);first3(16);first3(8);first3(12);first3(4);first3(14);first3(6);first3(10);first3(2);first3(15);first3(7);first3(11);first3(3);first3(13);first3(5);first3(9);]*X;
T = [ifirst3(1);ifirst3(16);ifirst3(8);ifirst3(12);ifirst3(4);ifirst3(14);ifirst3(6);ifirst3(10);ifirst3(2);ifirst3(15);ifirst3(7);ifirst3(11);ifirst3(3);ifirst3(13);ifirst3(5);ifirst3(9);]*X;
end
function myfi = getfi(input, issigned, wlen, flen)
fm = fimath('RoundMode', 'Nearest', ...
'OverflowMode', 'Saturate', ...
'ProductMode', 'FullPrecision', ...
'MaxProductWordLength', 128, ...
'SumMode', 'FullPrecision', ...
'MaxSumWordLength', 128, ...
'CastBeforeSum', true);
myfi = fi(input, issigned, wlen, flen, 'fimath', fm);
end
0 Comments
Answers (1)
Kiran Kintali
on 1 Nov 2020
See attached example for additional modeling guidelines for MATLAB to HDL.
0 Comments
See Also
Categories
Find more on FPGA, ASIC, and SoC Development in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!