Contour plot error using a while code

4 views (last 30 days)
asd ad
asd ad on 18 Aug 2020
Commented: Rena Berman on 12 Oct 2020
Hello everyone,
I would like to plot a contour plot with t(a) as my z axis (colourbar), RLL as my y axis and R as my x axis. I'm getting an error showing:
" Error using contourf (line 57)
Number of values in 'XData' and 'YData' must equal the number of columns and rows in 'ZData',
respectively."
How do I fix this error? I have attached my code below.
Thanks
clear all
close all
clc
%% Input Variables
R1 = 0; R2 = 125; R3 = 130; R4 = 140; R5 = 150; R6 = 160; R7 = 170; R8 = 180;
R9 = 190; R10 = 200; R11 = 210; R12 = 220; R13 = 230; R14 = 240; R15 = 250; R16 = 260; R17 = 270;
L1 = 0; L2 = 1.25; L3 = 2.5; L4 = 3.75; L5 = 5; L6 = 6.25; L7 = 7.5; L8 = 8.75; L9 = 10;
L10 = 11.25; L11 = 12.5; L12 = 13.75; L13 = 15; L14 = 16.25; L15 = 17.5; L16 = 18.75; L17 = 20;
R = [R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17];
tInitial = 0; % initial time [s]
tStep = 1; %time step [s]
IWR = R/2; %initial wetted radius [m]
IV = (4/3)*IWR^3; %initial droplet volume[m^3]
Rho = 1000; %density [kg/m^3]
T = 23.5; %temperature [celsius]
RH = [73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00;
71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50;
70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17;
68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70;
67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34;
64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19;
61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36;
58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53;
55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38;
49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72;
43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74;
37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76;
32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09;
23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60;
15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73;
7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00];; %relative humidity
RL = [R1*L1 R2*L1 R3*L1 R4*L1 R5*L1 R6*L1 R7*L1 R8*L1 R9*L1 R10*L1 R11*L1 R12*L1 R13*L1 R14*L1 R15*L1 R16*L1 R17*L1;
R1*L2 R2*L2 R3*L2 R4*L2 R5*L2 R6*L2 R7*L2 R8*L2 R9*L2 R10*L2 R11*L2 R12*L2 R13*L2 R14*L2 R15*L2 R16*L2 R17*L2;
R1*L3 R2*L3 R3*L3 R4*L3 R5*L3 R6*L3 R7*L3 R8*L3 R9*L3 R10*L3 R11*L3 R12*L3 R13*L3 R14*L3 R15*L3 R16*L3 R17*L3;
R1*L4 R2*L4 R3*L4 R4*L4 R5*L4 R6*L4 R7*L4 R8*L4 R9*L4 R10*L4 R11*L4 R12*L4 R13*L4 R14*L4 R15*L4 R16*L4 R17*L4;
R1*L5 R2*L5 R3*L5 R4*L5 R5*L5 R6*L5 R7*L5 R8*L5 R9*L5 R10*L5 R11*L5 R12*L5 R13*L5 R14*L5 R15*L5 R16*L5 R17*L5;
R1*L6 R2*L6 R3*L6 R4*L6 R5*L6 R6*L6 R7*L6 R8*L6 R9*L6 R10*L6 R11*L6 R12*L6 R13*L6 R14*L6 R15*L6 R16*L6 R17*L6;
R1*L7 R2*L7 R3*L7 R4*L7 R5*L7 R6*L7 R7*L7 R8*L7 R9*L7 R10*L7 R11*L7 R12*L7 R13*L7 R14*L7 R15*L7 R16*L7 R17*L7;
R1*L8 R2*L8 R3*L8 R4*L8 R5*L8 R6*L8 R7*L8 R8*L8 R9*L8 R10*L8 R11*L8 R12*L8 R13*L8 R14*L8 R15*L8 R16*L8 R17*L8;
R1*L9 R2*L9 R3*L9 R4*L9 R5*L9 R6*L9 R7*L9 R8*L9 R9*L9 R10*L9 R11*L9 R12*L9 R13*L9 R14*L9 R15*L9 R16*L9 R17*L9;
R1*L10 R2*L10 R3*L10 R4*L10 R5*L10 R6*L10 R7*L10 R8*L10 R9*L10 R10*L10 R11*L10 R12*L10 R13*L10 R14*L10 R15*L10 R16*L10 R17*L10;
R1*L11 R2*L11 R3*L11 R4*L11 R5*L11 R6*L11 R7*L11 R8*L11 R9*L11 R10*L11 R11*L11 R12*L11 R13*L11 R14*L11 R15*L11 R16*L11 R17*L11;
R1*L12 R2*L12 R3*L12 R4*L12 R5*L12 R6*L12 R7*L12 R8*L12 R9*L12 R10*L12 R11*L12 R12*L12 R13*L12 R14*L12 R15*L12 R16*L12 R17*L12;
R1*L13 R2*L13 R3*L13 R4*L13 R5*L13 R6*L13 R7*L13 R8*L13 R9*L13 R10*L13 R11*L13 R12*L13 R13*L13 R14*L13 R15*L13 R16*L13 R17*L13;
R1*L14 R2*L14 R3*L14 R4*L14 R5*L14 R6*L14 R7*L14 R8*L14 R9*L14 R10*L14 R11*L14 R12*L14 R13*L14 R14*L14 R15*L14 R16*L14 R17*L14;
R1*L15 R2*L15 R3*L15 R4*L15 R5*L15 R6*L15 R7*L15 R8*L15 R9*L15 R10*L15 R11*L15 R12*L15 R13*L15 R14*L15 R15*L15 R16*L15 R17*L15;
R1*L16 R2*L16 R3*L16 R4*L16 R5*L16 R6*L16 R7*L16 R8*L16 R9*L16 R10*L16 R11*L16 R12*L16 R13*L16 R14*L16 R15*L16 R16*L16 R17*L16;
R1*L17 R2*L17 R3*L17 R4*L17 R5*L17 R6*L17 R7*L17 R8*L17 R9*L17 R10*L17 R11*L17 R12*L17 R13*L17 R14*L17 R15*L17 R16*L17 R17*L17];
RLL = RL/2;
%% Initialising
h = ((sqrt(pi^2*IWR^6 + 9*IV^2) + 3*IV)^(2/3) - pi^(2/3)*IWR^2)/(pi^(1/3)*(sqrt(pi^2*IWR^6 + 9*IV^2) + 3*IV)^(1/3)); %height of the droplet [m]
ICAR = 2*atan(h/IWR); % initial contact angle [radians]
ICAD = ICAR*180/pi; % initial contact angle [degrees]
D_T = 2.5e-4*exp(-684.15/(T+273.15)); %diffuson coefficient [m^2/s]
c_sat = (9.99e-7)*T^3 - (6.94e-5)*T^2 + (3.2e-3)*T - 2.87e-2; %saturation concentration [kg/m^3]
%% Calculation
t = tInitial; %initial time [s]
CAR = ICAR; %contact angle for the start of while loop [radians]
CAD = ICAD; %contact angle for the start of while loop[degrees]
M = IV*Rho; %initial mass flow rate [kg/m^3]
V = IV; %initial droplet volume for start of while loop [m^3]
Vmm3 = V*1e9; %initial droplet volume for start of while loop [mm^3]
WR = IWR; %initial droplet wetted radius [m]
WRmm = WR*1000; %initial droplet wetted radius [mm]
a=1;
while V(a) > 0
t(a+1) = a*tStep;
M_dot(a) = -pi*WR(a)*D_T*(1 - RH)*c_sat*(0.27*CAR(a)^2+1.30); %mass flow rate [kg/s]
M(a+1) = M(a) + M_dot(a)*tStep; %mass loss at each time step [kg]
V(a+1) = M(a+1)/Rho; %new volume [m^3]
Vmm3(a+1) = V(a+1)*1e9; %new volume [mm^3]
WR(a+1) = IWR; %constant wetted radius [m]
WRmm(a+1) = WR(a+1)*1000; %constant wetted radius [mm]
h(a+1) = ((sqrt(pi^2*WR(a+1)^6 + 9*V(a+1)^2) + 3*V(a+1))^(2/3) - pi^(2/3)*WR(a+1)^2)/(pi^(1/3)*(sqrt(pi^2*WR(a+1)^6 + 9*V(a+1)^2) + 3*V(a+1))^(1/3)); %height of the droplet [m]
CAR(a+1) = 2*atan(h(a+1)/WR(a+1)); %new contact angle [radians]
CAD(a+1) = CAR(a+1)*180/pi; %new contact angle [degrees]
a = a + 1; %increasing time by 1 second for every loop
end
%% Plotting
a = 1:a-1;
contourf(RLL,R,t(a))
k = colorbar;
cmap = colormap;
ax = gca;
ax.Color = cmap(1, :);
k.Label.String = 'Evaporation Time (s)';
xlabel('Length (\mum)')
ylabel('Diameter (\mum)')
  6 Comments
Rik
Rik on 20 Aug 2020
Question body retrieved from Google Cache:
Hello everyone,
I would like to plot a contour plot with t(a) as my z axis (colourbar), RLL as my y axis and R as my x axis. I'm getting an error showing:
" Error using contourf (line 57)
Number of values in 'XData' and 'YData' must equal the number of columns and rows in 'ZData',
respectively."
How do I fix this error? I have attached my code below.
Thanks
clear all
close all
clc
%% Input Variables
R1 = 0; R2 = 125; R3 = 130; R4 = 140; R5 = 150; R6 = 160; R7 = 170; R8 = 180;
R9 = 190; R10 = 200; R11 = 210; R12 = 220; R13 = 230; R14 = 240; R15 = 250; R16 = 260; R17 = 270;
L1 = 0; L2 = 1.25; L3 = 2.5; L4 = 3.75; L5 = 5; L6 = 6.25; L7 = 7.5; L8 = 8.75; L9 = 10;
L10 = 11.25; L11 = 12.5; L12 = 13.75; L13 = 15; L14 = 16.25; L15 = 17.5; L16 = 18.75; L17 = 20;
R = [R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17;
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17];
tInitial = 0; % initial time [s]
tStep = 1; %time step [s]
IWR = R/2; %initial wetted radius [m]
IV = (4/3)*IWR^3; %initial droplet volume[m^3]
Rho = 1000; %density [kg/m^3]
T = 23.5; %temperature [celsius]
RH = [73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00;
71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50 71.50;
70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17 70.17;
68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70 68.70;
67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34 67.34;
64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19 64.19;
61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36;
58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53 58.53;
55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38 55.38;
49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72 49.72;
43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74 43.74;
37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76 37.76;
32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09 32.09;
23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60;
15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73 15.73;
7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87;
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00];; %relative humidity
RL = [R1*L1 R2*L1 R3*L1 R4*L1 R5*L1 R6*L1 R7*L1 R8*L1 R9*L1 R10*L1 R11*L1 R12*L1 R13*L1 R14*L1 R15*L1 R16*L1 R17*L1;
R1*L2 R2*L2 R3*L2 R4*L2 R5*L2 R6*L2 R7*L2 R8*L2 R9*L2 R10*L2 R11*L2 R12*L2 R13*L2 R14*L2 R15*L2 R16*L2 R17*L2;
R1*L3 R2*L3 R3*L3 R4*L3 R5*L3 R6*L3 R7*L3 R8*L3 R9*L3 R10*L3 R11*L3 R12*L3 R13*L3 R14*L3 R15*L3 R16*L3 R17*L3;
R1*L4 R2*L4 R3*L4 R4*L4 R5*L4 R6*L4 R7*L4 R8*L4 R9*L4 R10*L4 R11*L4 R12*L4 R13*L4 R14*L4 R15*L4 R16*L4 R17*L4;
R1*L5 R2*L5 R3*L5 R4*L5 R5*L5 R6*L5 R7*L5 R8*L5 R9*L5 R10*L5 R11*L5 R12*L5 R13*L5 R14*L5 R15*L5 R16*L5 R17*L5;
R1*L6 R2*L6 R3*L6 R4*L6 R5*L6 R6*L6 R7*L6 R8*L6 R9*L6 R10*L6 R11*L6 R12*L6 R13*L6 R14*L6 R15*L6 R16*L6 R17*L6;
R1*L7 R2*L7 R3*L7 R4*L7 R5*L7 R6*L7 R7*L7 R8*L7 R9*L7 R10*L7 R11*L7 R12*L7 R13*L7 R14*L7 R15*L7 R16*L7 R17*L7;
R1*L8 R2*L8 R3*L8 R4*L8 R5*L8 R6*L8 R7*L8 R8*L8 R9*L8 R10*L8 R11*L8 R12*L8 R13*L8 R14*L8 R15*L8 R16*L8 R17*L8;
R1*L9 R2*L9 R3*L9 R4*L9 R5*L9 R6*L9 R7*L9 R8*L9 R9*L9 R10*L9 R11*L9 R12*L9 R13*L9 R14*L9 R15*L9 R16*L9 R17*L9;
R1*L10 R2*L10 R3*L10 R4*L10 R5*L10 R6*L10 R7*L10 R8*L10 R9*L10 R10*L10 R11*L10 R12*L10 R13*L10 R14*L10 R15*L10 R16*L10 R17*L10;
R1*L11 R2*L11 R3*L11 R4*L11 R5*L11 R6*L11 R7*L11 R8*L11 R9*L11 R10*L11 R11*L11 R12*L11 R13*L11 R14*L11 R15*L11 R16*L11 R17*L11;
R1*L12 R2*L12 R3*L12 R4*L12 R5*L12 R6*L12 R7*L12 R8*L12 R9*L12 R10*L12 R11*L12 R12*L12 R13*L12 R14*L12 R15*L12 R16*L12 R17*L12;
R1*L13 R2*L13 R3*L13 R4*L13 R5*L13 R6*L13 R7*L13 R8*L13 R9*L13 R10*L13 R11*L13 R12*L13 R13*L13 R14*L13 R15*L13 R16*L13 R17*L13;
R1*L14 R2*L14 R3*L14 R4*L14 R5*L14 R6*L14 R7*L14 R8*L14 R9*L14 R10*L14 R11*L14 R12*L14 R13*L14 R14*L14 R15*L14 R16*L14 R17*L14;
R1*L15 R2*L15 R3*L15 R4*L15 R5*L15 R6*L15 R7*L15 R8*L15 R9*L15 R10*L15 R11*L15 R12*L15 R13*L15 R14*L15 R15*L15 R16*L15 R17*L15;
R1*L16 R2*L16 R3*L16 R4*L16 R5*L16 R6*L16 R7*L16 R8*L16 R9*L16 R10*L16 R11*L16 R12*L16 R13*L16 R14*L16 R15*L16 R16*L16 R17*L16;
R1*L17 R2*L17 R3*L17 R4*L17 R5*L17 R6*L17 R7*L17 R8*L17 R9*L17 R10*L17 R11*L17 R12*L17 R13*L17 R14*L17 R15*L17 R16*L17 R17*L17];
RLL = RL/2;
%% Initialising
h = ((sqrt(pi^2*IWR^6 + 9*IV^2) + 3*IV)^(2/3) - pi^(2/3)*IWR^2)/(pi^(1/3)*(sqrt(pi^2*IWR^6 + 9*IV^2) + 3*IV)^(1/3)); %height of the droplet [m]
ICAR = 2*atan(h/IWR); % initial contact angle [radians]
ICAD = ICAR*180/pi; % initial contact angle [degrees]
D_T = 2.5e-4*exp(-684.15/(T+273.15)); %diffuson coefficient [m^2/s]
c_sat = (9.99e-7)*T^3 - (6.94e-5)*T^2 + (3.2e-3)*T - 2.87e-2; %saturation concentration [kg/m^3]
%% Calculation
t = tInitial; %initial time [s]
CAR = ICAR; %contact angle for the start of while loop [radians]
CAD = ICAD; %contact angle for the start of while loop[degrees]
M = IV*Rho; %initial mass flow rate [kg/m^3]
V = IV; %initial droplet volume for start of while loop [m^3]
Vmm3 = V*1e9; %initial droplet volume for start of while loop [mm^3]
WR = IWR; %initial droplet wetted radius [m]
WRmm = WR*1000; %initial droplet wetted radius [mm]
a=1;
while V(a) > 0
t(a+1) = a*tStep;
M_dot(a) = -pi*WR(a)*D_T*(1 - RH)*c_sat*(0.27*CAR(a)^2+1.30); %mass flow rate [kg/s]
M(a+1) = M(a) + M_dot(a)*tStep; %mass loss at each time step [kg]
V(a+1) = M(a+1)/Rho; %new volume [m^3]
Vmm3(a+1) = V(a+1)*1e9; %new volume [mm^3]
WR(a+1) = IWR; %constant wetted radius [m]
WRmm(a+1) = WR(a+1)*1000; %constant wetted radius [mm]
h(a+1) = ((sqrt(pi^2*WR(a+1)^6 + 9*V(a+1)^2) + 3*V(a+1))^(2/3) - pi^(2/3)*WR(a+1)^2)/(pi^(1/3)*(sqrt(pi^2*WR(a+1)^6 + 9*V(a+1)^2) + 3*V(a+1))^(1/3)); %height of the droplet [m]
CAR(a+1) = 2*atan(h(a+1)/WR(a+1)); %new contact angle [radians]
CAD(a+1) = CAR(a+1)*180/pi; %new contact angle [degrees]
a = a + 1; %increasing time by 1 second for every loop
end
%% Plotting
a = 1:a-1;
contourf(RLL,R,t(a))
k = colorbar;
cmap = colormap;
ax = gca;
ax.Color = cmap(1, :);
k.Label.String = 'Evaporation Time (s)';
xlabel('Length (\mum)')
ylabel('Diameter (\mum)')
Rena Berman
Rena Berman on 12 Oct 2020
(Answers Dev) Restored edit

Sign in to comment.

Answers (1)

Walter Roberson
Walter Roberson on 18 Aug 2020
t is a vector. t(a) is going to be a vector. You can never use a vector in the z coordinates for surf()
surf() is only for cases where you can define 2d arrays of x, y, and corresponding z, or at the very least vector x and y and 2d array z.
Under no circumstances can surf be used to ask to interpolate a surface from scattered x and y and z.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!