MATLAB Answers

GA Toolbox maximization fucntion

1 view (last 30 days)
Mohammed Bakr
Mohammed Bakr on 21 Nov 2020
Edited: Matt J on 22 Nov 2020
In GA toolbox in Matlab we are getting fitness curve in form of minimization. How can I get maximization (fitness function) curve?
Can anyone help me in getting GA code for optimization?
this is my code
function [e] = mohfun(r)
dt = r(1);
ltt = r(2);
dss = r(3);
%% Data of cold fluid
tci=30; %Input temperature of cold fluid (C)
%tco=35; %Output temperature of cold fluid (C)
rowc=1000; %Density (kg/m3)
mioc=0.000797; %Viscosity (Pa s)
kc=.613; %Thermal conductivity (W/m K)
prc=5.83; %Prandtl number
cpc=4186; %Heat capacity (kJ/kg K)
mc=42; %Mass flow rate of cold fluid
vec=1.14; %velocity of cold fluid
%rec; %Reynold’s number OF COLD fluid
%hc; %hot stream of cold fluid
%ftc, %Darcy friction factor of cold fluid
%qc=input('Enter heat duty of cold fluid = '); %heat duty (W)
%% Data of hot fluid
thi=60; %Input temperature of hot stream (C)
%tho=45; %Output temperature of hot stream (C)
rowh=865.8; %Density (kg/m3)
mioh=0.023; %Viscosity (Pa s)
kh=0.141; %Thermal conductivity (W/m K)
prh=1205; %Prandtl number
cph=2000; %Heat capacity (kJ/kg K)
mh=17.2; %Mass flow rate
%veh=1.5; %velocity of hot fluid
%qh=input('Enter heat duty of hot fluid = '); %heat duty (W)
%pit=.005; %triangular pitch
%res %reynolds number (res) for shell side
%hs %hot stream of hot fluid
%% data of tube
%nt=input('Enter number of tube = '); %number of tube
dti=dt; %Tube inside diameter (m)
st=0.0043; %Tube thickness (m)
Rft=0.00042; %fouling factor
%dto %outer dimeter of tube
lt=ltt; %lt=input('Enter the length of tube = '); %Tubes length (m)
%% Data of shell
ds=dss; %Shell inside diameter (m)
np=1; %Number of tube passes
Rfs=0.0002; %fouling factor
%dh %hydraulic diameter
%% Equation
fprintf('dti %f \n ',dti)
fprintf('ltt %f \n ',ltt)
fprintf('dss %f \n ',dss)
dto=dti+st;
fprintf('dto %f \n ',dto)
%nt=mc/(rowc*(pi/4)*(dti^2)*vec);
v1=pi/4;
v2=dti^2;
v3=rowc*v2;
v4=v3*v1*vec;
nt=mc/v4;
ntt=nt*2;
fprintf('nt %f \n',nt)
%nt=nt1*2;
fprintf('ntt %f \n',ntt)
as=pi*dto*lt*nt*np;
fprintf('as %f \n',as)
rec = (rowc*vec*dti)/(mioc);
fprintf('rec %f \n',rec)
ftc = ((1.82*log(rec))-1.64)^(-2);
fprintf('ftc %f \n',ftc)
if rec < 2300
hc = (kc/dti)*(3.657+((0.0677*rec*prc*(dti/3.050))^1.33)/(1+0.1*prc*((rec*(dti/3.050))^0.3)));
elseif 2300 < rec && rec < 10000
hc = (kc/dti)*((1+(dti/3.050))^0.67)*(((ftc/8)*(rec-1000)*(prc))/(1+12.7*((ftc/8)^0.5)*((prc^0.667)-1)));
elseif rec > 10000
hc = (0.027)*(kc/dti)*(rec^0.8)*(prc^(1/3))*(mioc/mioc)^0.14;
end
fprintf('hc %f \n',hc)
%dh = (4*(0.43*pit^2-(pi*0.125*dto^2)))/(0.5*pi*dto);
%d1=ds^2-(dto^2*nt);
%d2=ds+(dto*nt);
%dh=d1/d2;
dh=(ds^2-(dto^2*nt))/(ds+(dto*nt));
fprintf('dh %f \n',dh)
f1=pi/4;
f2=f1*dh^2;
f3=f2*rowh;
veh=mh/f3;
fprintf('veh %f \n',veh)
res=(rowh*veh*dh)/mioh;
fprintf('res %f \n',res)
hs=(0.36*kh*res^0.55*prh^0.33)/dh;
fprintf('hs %f \n',hs)
%U = ((1/hs)+Rfs+(dto/dti)*(Rft+(1/hc)))^(-1);
U = ((1/hs)+Rfs+Rft+(1/hc))^(-1);
fprintf('U %f \n',U)
c1=mc*cpc;
fprintf('c1 %f \n',c1)
c2=mh*cph;
fprintf('c2 %f \n',c2)
if c1>c2
c_x=c1;
c_m=c2;
else
c_x=c2;
c_m=c1;
end
fprintf('c_m %f \n',c_m)
fprintf('c_x %f \n',c_x)
ntu= (as*U)/c_m;
fprintf('ntu %f \n',ntu)
cr=c_m/c_x;
fprintf('cr %f \n',cr)
%ef=1-exp(-cr^-1 * (1-exp(1-cr(ntu))));
e1=exp(-cr*ntu);
e2=1-e1;
e3=-cr^-1;
e4=e3*e2;
e5=exp(e4);
ef=1-e5;
%e7=1+e6;
%ef=1/e7;
e=ef;
fprintf('ef %f \n',ef)
tho=thi-ef*(thi-tci);
fprintf('tho %f \n',tho)
qh=mh*cph*(thi-tho);
fprintf('qh %f \n',qh)
tco=(qh/(mc*cpc))+tci;
fprintf('tco %f \n',tco)
lt= as/(pi*dto*nt);
fprintf('lt %f \n',lt)
end

  0 Comments

Sign in to comment.

Accepted Answer

Walter Roberson
Walter Roberson on 21 Nov 2020
To maximize a function, minimize the negative of the function
@(x) -f(x)

  1 Comment

Mohammed Bakr
Mohammed Bakr on 21 Nov 2020
how can i do that ..... How can I get maximization (fitness function) curve?

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!