Matrix Optimization using optimization toolbox - "Objective must be a scalar OptimizationExpression or a struct containing a scalar OptimizationExpression."
9 views (last 30 days)
Show older comments
Samuele Bolotta
on 13 Feb 2021
Commented: Samuele Bolotta
on 13 Feb 2021
Hello everyone,
My task is to find x and y so that if I multiply them by G_max_chl2 and G_max_glu2 (two scalar values that I pre-defined in previous parts of the code) respectively, this:
((G_max_chl2 * x) .* (1 - exp(-t / tau_rise_In2)) .* (exp(-t / tau_decay_In2)) * (Vm - EChl2)) + ((G_max_glu2 * y) .* (1 - exp(-t / tau_rise_Ex2)) .* exp(-t / tau_decay_Ex2) * (Vm - EGlu2))
becomes the same as this:
((G_max_chl) .* (1 - exp(-t / tau_rise_In)) .* (exp(-t / tau_decay_In)) * (Vm - EChl)) + (G_max_glu .* (1 - exp(-t / tau_rise_Ex)) .* exp(-t / tau_decay_Ex) * (Vm - EGlu))
1 All the variables above are the same for the two equations, except for the four "G_max" values. The only two variables that change are G_max_chl2 and G_max_glu2, indeed.
2 Some of these variables are matrices, but again they are not affected by the optimization problem and should remain the same, while the two scalars G_max_chl2 and G_max_glu2 should change
prob = optimproblem('ObjectiveSense','min');
x = optimvar('x',1);
y = optimvar('y',1);
expr = ((G_max_chl2 * x) .* (1 - exp(-t / tau_rise_In2)) .* ...
(exp(-t / tau_decay_In2)) * (Vm - EChl2)) + ((G_max_glu2 * y) .* ...
(1 - exp(-t / tau_rise_Ex2)) .* exp(-t / tau_decay_Ex2) * (Vm - EGlu2)) == ((G_max_chl) .* ...
(1 - exp(-t / tau_rise_In)) .* (exp(-t / tau_decay_In)) * ...
(Vm - EChl)) + (G_max_glu .* (1 - exp(-t / tau_rise_Ex)) .* exp(-t / tau_decay_Ex) * (Vm - EGlu));
prob.Objective = expr;
% Create constraints in the problem
cons1 = ((G_max_chl2 * x) .* (1 - exp(-t / tau_rise_In2)) .* ...
(exp(-t / tau_decay_In2)) * (Vm - EChl2)) + ((G_max_glu2 * y) .* ...
(1 - exp(-t / tau_rise_Ex2)) .* exp(-t / tau_decay_Ex2) * (Vm - EGlu2)) - ((G_max_chl) .* ...
(1 - exp(-t / tau_rise_In)) .* (exp(-t / tau_decay_In)) * ...
(Vm - EChl)) + (G_max_glu .* (1 - exp(-t / tau_rise_Ex)) .* exp(-t / tau_decay_Ex) * (Vm - EGlu)) < 0.1;
cons2 = ((G_max_chl2 * x) .* (1 - exp(-t / tau_rise_In2)) .* ...
(exp(-t / tau_decay_In2)) * (Vm - EChl2)) + ((G_max_glu2 * y) .* ...
(1 - exp(-t / tau_rise_Ex2)) .* exp(-t / tau_decay_Ex2) * (Vm - EGlu2)) - ((G_max_chl) .* ...
(1 - exp(-t / tau_rise_In)) .* (exp(-t / tau_decay_In)) * ...
(Vm - EChl)) + (G_max_glu .* (1 - exp(-t / tau_rise_Ex)) .* exp(-t / tau_decay_Ex) * (Vm - EGlu)) > -0.1;
prob.Constraints.cons1 = cons1;
prob.Constraints.cons2 = cons2;
[sol,fval,exitflag,output] = solve(prob);
I am not sure what is not working. Thanks!
0 Comments
Accepted Answer
Matt J
on 13 Feb 2021
Edited: Matt J
on 13 Feb 2021
You do not have a minimization problem. You just have a system of equations that you are trying to solve. For that, you would use the EquationProblem framework.
x = optimvar('x',1);
y = optimvar('y',1);
expr = ((G_max_chl2 * x) .* (1 - exp(-t / tau_rise_In2)) .* ...
(exp(-t / tau_decay_In2)) * (Vm - EChl2)) + ((G_max_glu2 * y) .* ...
(1 - exp(-t / tau_rise_Ex2)) .* exp(-t / tau_decay_Ex2) * (Vm - EGlu2)) == ((G_max_chl) .* ...
(1 - exp(-t / tau_rise_In)) .* (exp(-t / tau_decay_In)) * ...
(Vm - EChl)) + (G_max_glu .* (1 - exp(-t / tau_rise_Ex)) .* exp(-t / tau_decay_Ex) * (Vm - EGlu));
% Create constraints in the problem
cons1 = ((G_max_chl2 * x) .* (1 - exp(-t / tau_rise_In2)) .* ...
(exp(-t / tau_decay_In2)) * (Vm - EChl2)) + ((G_max_glu2 * y) .* ...
(1 - exp(-t / tau_rise_Ex2)) .* exp(-t / tau_decay_Ex2) * (Vm - EGlu2)) - ((G_max_chl) .* ...
(1 - exp(-t / tau_rise_In)) .* (exp(-t / tau_decay_In)) * ...
(Vm - EChl)) + (G_max_glu .* (1 - exp(-t / tau_rise_Ex)) .* exp(-t / tau_decay_Ex) * (Vm - EGlu)) < 0.1;
cons2 = ((G_max_chl2 * x) .* (1 - exp(-t / tau_rise_In2)) .* ...
(exp(-t / tau_decay_In2)) * (Vm - EChl2)) + ((G_max_glu2 * y) .* ...
(1 - exp(-t / tau_rise_Ex2)) .* exp(-t / tau_decay_Ex2) * (Vm - EGlu2)) - ((G_max_chl) .* ...
(1 - exp(-t / tau_rise_In)) .* (exp(-t / tau_decay_In)) * ...
(Vm - EChl)) + (G_max_glu .* (1 - exp(-t / tau_rise_Ex)) .* exp(-t / tau_decay_Ex) * (Vm - EGlu)) > -0.1;
prob = eqnproblem;
prob.Equations.eqn1=expr;
prob.Equations.eqn2 = cons1;
prob.Equations.eqn3 = cons2;
sol= solve(prob);
3 Comments
More Answers (0)
See Also
Categories
Find more on Linear Least Squares in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!