Using Multistart with constrainted fmincon
13 views (last 30 days)
Show older comments
Meikel Vollmers
on 25 May 2021
Commented: Meikel Vollmers
on 31 May 2021
Hey,
i want to optimize a constrainted function using fmincon. To find the global optimum, i found out that the use of MultiStart is helpful. My function looks like this
Here is my code for the use of fmincon
k = [5,7];
p = [1:4];
a = [pi/11, pi/7, pi/6, pi/3]; %Initial guesses
weights=(1./k.^4);
weights=weights/sum(weights);
fun = @(a) sqrt(sum( weights(:).*( 1 + 2*sum( (-1).^p.*cos(k(:).*a(p)) ,2) ).^2) );
A = [1, -1,0,0;0, 1, -1, 0; 0,0,1,-1]; % a1 < a2 < a3 ..
B = [0,0,0];
Aeq = [];
Beq = [];
lb = [0,0,0,0];
ub = [pi/4,pi/4,pi/4,pi/4];
function [c,ceq] = modindex(a,p) % saved as a seperate script
c = [];
ceq = 4/pi.*( 1 + 2*sum( (-1).^p.*cos(a(p)) ,2 ))-0.6;
end
nlcon = @(a) modindex(a,p); % this is a constraint, implemented as a function
x = fmincon(fun, a, A, B, Aeq, Beq, lb, ub,nlcon)
For the use of fmincon this code works, but now i want to run it with MultiStart. My question is how to respect all of my constraints?
My first try was this
problem = createOptimProblem('fmincon', 'objective', fun, 'x0', [pi/11, pi/7, pi/6, pi/3],'A', [1, -1,0,0;0, 1, -1, 0; 0,0,1,-1],...
'b',[0,0,0], 'Aeq', [], 'beq', [], 'lb', [0,0,0,0], 'ub', [pi/4,pi/4,pi/4,pi/4], 'nonlcon', @(a) modindex(a,p));
ms = MultiStart( 'UseParallel', 'allways', 'StartPointstoRun', 'bounds');
[x,f] = run(ms, problem, 10)
This doesnt work, "No field A exists for PROBLEM structure."
What does my code must look like, that all of the constraints are respected?
Kind regards
0 Comments
Accepted Answer
Matt J
on 25 May 2021
problem = createOptimProblem('fmincon', 'objective', fun, 'x0', [pi/11, pi/7, pi/6, pi/3],'Aineq', [1, -1,0,0;0, 1, -1, 0; 0,0,1,-1],...
'bineq',[0,0,0], 'Aeq', [], 'beq', [], 'lb', [0,0,0,0], 'ub', [pi/4,pi/4,pi/4,pi/4], 'nonlcon', @(a) modindex(a,p));
21 Comments
Matt J
on 29 May 2021
Edited: Matt J
on 29 May 2021
We can prove mathematically that the smallest value m can have is about 0.527393087579050.
First, because the sequence of are monotonic in [0,],
Therefore,
So, you cannot consider any m lower than this value.
Also, this is a tight lower bound, achieved for example by choosing and all other .
More Answers (0)
See Also
Categories
Find more on Global or Multiple Starting Point Search in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!