2D Electric potential/field in parallel plates capacitor
Solving numerically the 2D Laplace Equation for parallel plates capacitor
using finite differences method, convergence is attained using the norm's
criterion with tolerance=6.00, Number of iteration N=611.
-Laplace : d²U(x,y)/dx²+d²U(x,y)/dy²=0
-boundaries : U(x=0,y)=0, U(x=L,0)=0, U(x,y=0)=0, U(x,y=L)=0.
Derivation of the numerical solution is detailed in the file"Laplace2D_E_U.pdf".
Parameters :
- Dimensions : square box of length L=200 mm .
- Voltage : two plates : (1) at 220 volts and (2) at -220 volts.
- distance : between plates d=80 mm .
- density : rho=0 vacuum between plates.
Outputs :
- Electric potential U(x,y).
- Electric field E(x,y).
Screen Shot :
left : result of the distribution of the electric potential .
right : Image from the "Manufactures & Exporters of Scientific
& laboratory Equipments".
http://www.jsexports.com/capacitor-parallel-plates-280.html
Cite As
Youssef Khmou (2024). 2D Electric potential/field in parallel plates capacitor (https://www.mathworks.com/matlabcentral/fileexchange/37923-2d-electric-potential-field-in-parallel-plates-capacitor), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 |