TUM adopted Model-Based Design across the Institute for Flight System Dynamics for classroom activities, research initiatives, and control design projects with industry partners.
In Flight Controls 1 and Flight Controls 2, lectures are complemented with interactive demonstrations and tutorials based on a simulator built using MATLAB® and Simulink®. For example, students use the simulator to determine steady-state flight conditions through trim routines and then use MATLAB to analyze simulation results.
Students develop controller models using Simulink gain, integrator, and transfer blocks and then run closed-loop simulations with a Simulink model of an aircraft.
In Flight System Dynamics, students use Simulink to simulate level flight, acceleration, deceleration, climb and descend, and other performance cases for which there are no simple analytical, closed-form solutions.
Apart from their work with simulators, students test novel flight control, sensor data fusion, and navigation algorithms on quadrocopters—40 cm-by-40 cm flying aircraft with four rotors.
They use Embedded Coder® to generate code from Simulink models. They deploy the code directly to the quadrocopters’ embedded processors for in-lab flight tests.
The institute operates two simulators that are much more sophisticated than the lecture simulator: the Research Flight Simulator, which has a generic cockpit replicating a twin engine aircraft, and the high-fidelity Diamond DA-42 Flight Training Device. The Flight Training Device was built with original aircraft components from a DA-42 to ensure the highest degree of realism for the simulation of control forces. Both simulators were built using MATLAB, Simulink, and Stateflow®.
TUM researchers use Simulink Coder™ to generate C code from their Simulink models and achieve near-real-time performance in the Research Flight Simulator.
A TUM research team led by Ph.D. candidate and research fellow Markus Hornauer is using Model-Based Design to develop a process that will enable smaller civilian and defense contractors to cost-effectively develop flight-worthy, certifiable software that meets European Aviation Safety Agency standards.