Skip to content
MathWorks - Mobile View
  • Melden Sie sich bei Ihrem MathWorks Konto anMelden Sie sich bei Ihrem MathWorks Konto an
  • Access your MathWorks Account
    • Eigener Account
    • Mein Community Profil
    • Lizenz zuordnen
    • Abmelden
  • Produkte
  • Lösungen
  • Forschung und Lehre
  • Support
  • Community
  • Veranstaltungen
  • MATLAB erhalten
MathWorks
  • Produkte
  • Lösungen
  • Forschung und Lehre
  • Support
  • Community
  • Veranstaltungen
  • MATLAB erhalten
  • Melden Sie sich bei Ihrem MathWorks Konto anMelden Sie sich bei Ihrem MathWorks Konto an
  • Access your MathWorks Account
    • Eigener Account
    • Mein Community Profil
    • Lizenz zuordnen
    • Abmelden

Videos und Webinare

  • MathWorks
  • Videos
  • Videos Homepage
  • Suche
  • Videos Homepage
  • Suche
  • Vertrieb kontaktieren
  • Testsoftware
2:42 Video length is 2:42.
  • Description
  • Full Transcript
  • Code and Resources

Asset Allocation - Hierarchical Risk Parity

From the series: Machine Learning in Finance

This example will walk you through the steps to build an asset allocation strategy based on Hierarchical Risk Parity (HRP).

You will:
 
  • Learn how to use statistics and machine learning techniques to cluster assets into a hierarchical tree structure.
  • Understand how to develop allocation strategies based on the tree structure and risk parity concept through recursion.
  • Compare its result with mean-variance asset allocation.

In this video we will discuss the Hierarchical Risk Parity portfolio construction which produces a much more diversified portfolio compared to the mean-variance method for a similar risk. The HRP focuses on allocation of risk, rather than allocation of capital. The algorithm operates in three stages: tree clustering, quasi-diagonalization, and recursive bisection.

STAGE 1: TREE CLUSTERING

We first use the linkage and dendrogram built-in functions, found in Statistics and Machine Learning Toolbox to construct and visualize the hierarchical tree. The hierarchical clustering is to find the distance between assets and group them into a tree so that allocations can flow downstream through a tree graph.

 STAGE 2: QUASI-DIAGONALIZATION

Quasi-diagonalization is then performed, so that the largest values lie along the diagonal. In this way, similar investments are placed together, and dissimilar investments are placed far apart.

STAGE 3: RECURSIVE BISECTION

Now, given this tree structure, we are ready to allocate funds using the risk parity concept. Let’s consider the example of four assets. We assign a unit weight to all assets. We bisect the current list into left and right halves. We find the weights of the left and right lists based on inverse variance. We compute the total variance of the left and right halves, as well as the splitting factor alpha. We finally rescale the weights of both halves by alpha. We repeat the exact same algorithm for each half: bisect into left and right sections, calculate the weights and variance, and rescale the weights by alpha. The algorithm stops when we have a single asset per section.

Compare HRP to Mean-Variance Portfolio

We can clearly see that HRP produces a much more diversified allocation compared to mean-variance framework, which concentrates 92% of the allocations on the top six holdings. What drives the mean-variance extreme concentration is its goal of minimizing the portfolio’s risk, and yet both portfolios have a very similar risk. As a result, any distress situation affecting the six top holdings’ allocations will have a greater impact on the mean-variance than the HRP’s portfolio.

Thank you for watching.

Download Code and Files

Download code

Related Products

  • Statistics and Machine Learning Toolbox
  • Financial Toolbox

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper
Related Information
Download code

Feedback

Featured Product

Statistics and Machine Learning Toolbox

  • Request Trial
  • Get Pricing

Up Next:

Aberdeen Standard discusses the use of MATLAB for machine learning to analyze financial market trends and testing on Microsoft Azure.
22:06
Asset Allocation, Machine Learning, and High-Performance...
View full series (9 Videos)

Related Videos:

3:31
Munich Re Trading Creates a Risk Analytics Platform with...
4:11
Munich Re Trading Creates a Risk Analytics Platform with...
49:45
"The Prayer" - Ten-Step Checklist for Advanced Risk and...
17:49
Global Tactical Asset Allocation and Portfolio Construction...
53:09
Credit Risk Modeling with MATLAB

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Vertrieb kontaktieren
  • Testsoftware

MathWorks

Accelerating the pace of engineering and science

MathWorks ist der führende Entwickler von Software für mathematische Berechnungen für Ingenieure und Wissenschaftler.

Entdecken Sie…

Produkte

  • MATLAB
  • Simulink
  • Software für Studierende
  • Hardware-Unterstützung
  • File Exchange

Testen oder Kaufen

  • Downloads
  • Testsoftware
  • Vertrieb kontaktieren
  • Preise und Lizenzierung
  • Store

Lernen

  • Dokumentation
  • Tutorials
  • Beispiele
  • Videos und Webinare
  • Schulungen

Support

  • Hilfe zur Installation
  • MATLAB Answers
  • Consulting
  • License Center
  • Support kontaktieren

Über MathWorks

  • Jobs & Karriere
  • Newsroom
  • Soziales Engagement
  • Berichte von Anwendern
  • Über MathWorks
  • Select a Web Site United States
  • Trust Center
  • Handelsmarken
  • Datenschutz
  • Datendiebstahl verhindern
  • Status von Anwendungen

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Folgen Sie uns