Skip to content
MathWorks - Mobile View
  • Melden Sie sich bei Ihrem MathWorks Konto anMelden Sie sich bei Ihrem MathWorks Konto an
  • Access your MathWorks Account
    • Eigener Account
    • Mein Community Profil
    • Lizenz zuordnen
    • Abmelden
  • Produkte
  • Lösungen
  • Forschung und Lehre
  • Support
  • Community
  • Veranstaltungen
  • MATLAB erhalten
MathWorks
  • Produkte
  • Lösungen
  • Forschung und Lehre
  • Support
  • Community
  • Veranstaltungen
  • MATLAB erhalten
  • Melden Sie sich bei Ihrem MathWorks Konto anMelden Sie sich bei Ihrem MathWorks Konto an
  • Access your MathWorks Account
    • Eigener Account
    • Mein Community Profil
    • Lizenz zuordnen
    • Abmelden

Videos und Webinare

  • MathWorks
  • Videos
  • Videos Homepage
  • Suche
  • Videos Homepage
  • Suche
  • Vertrieb kontaktieren
  • Testsoftware
26:57 Video length is 26:57.
  • Description
  • Code and Resources

Object Recognition: Deep Learning and Machine Learning for Computer Vision

Object recognition is enabling innovative systems like self-driving cars, image based retrieval, and autonomous robotics. The machine learning and deep learning these systems rely on can be difficult to train, evaluate, and compare.

In this webinar we explore how MATLAB addresses the most common challenges encountered while developing object recognition systems. This webinar will cover new capabilities for deep learning, machine learning and computer vision.

We will use real-world examples to demonstrate:

  •  Training models using large image datasets
  • Training deep neural networks from scratch
  • Using transfer learning to re-use trained deep networks for new tasks
  • Exploring the tradeoffs between machine learning and deep learning

About the Presenters

Johanna Pingel joined the MathWorks team in 2013, specializing in Image Processing and Computer Vision applications with MATLAB. She has a M.S. degree from Rensselaer Polytechnic Institute and a B.A. degree from Carnegie Mellon University. She has been working in the Computer Vision application space for over 5 years, with a focus on object detection and tracking. 

Avinash Nehemiah works on computer vision applications in technical marketing at MathWorks. Prior to joining MathWorks he spent 7 years as an algorithm developer and researcher designing computer vision algorithms for hospital safety and video surveillance. He holds an MSEE degree from Carnegie Mellon University.

Recorded: 7 Mar 2017

Download Code and Files

View the example files from the webinar

Related Products

  • Deep Learning Toolbox
  • Computer Vision Toolbox
  • Deep Learning Toolbox
  • Image Acquisition Toolbox
  • Image Processing Toolbox
  • Robotics System Toolbox
  • Statistics and Machine Learning Toolbox
  • Vision HDL Toolbox

3 Ways to Speed Up Model Predictive Controllers

Read white paper

A Practical Guide to Deep Learning: From Data to Deployment

Read ebook

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Deep Learning and Traditional Machine Learning: Choosing the Right Approach

Read ebook

Hardware-in-the-Loop Testing for Power Electronics Control Design

Read white paper

Predictive Maintenance with MATLAB

Read ebook

Electric Vehicle Modeling and Simulation - Architecture to Deployment : Webinar Series

Register for Free

How much do you know about power conversion control?

Start quiz
Related Information

DOWNLOAD CODE

Get the example code used in this video

Feedback

Featured Product

Deep Learning Toolbox

  • Request Trial
  • Get Pricing

Up Next:

3:36
Wine Classification with Neural Net Pattern Recognition App

Related Videos:

24:56
Optimal Neural Network for Automotive Product Development
42:27
Machine Learning and Computer Vision for Medical Imaging...
40:27
Machine Learning and Computer Vision for Biological Imaging...
7:35
Deep Learning for Computer Vision with MATLAB (Highlights)

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Vertrieb kontaktieren
  • Testsoftware

MathWorks

Accelerating the pace of engineering and science

MathWorks ist der führende Entwickler von Software für mathematische Berechnungen für Ingenieure und Wissenschaftler.

Entdecken Sie…

Produkte

  • MATLAB
  • Simulink
  • Software für Studierende
  • Hardware-Unterstützung
  • File Exchange

Testen oder Kaufen

  • Downloads
  • Testsoftware
  • Vertrieb kontaktieren
  • Preise und Lizenzierung
  • Store

Lernen

  • Dokumentation
  • Tutorials
  • Beispiele
  • Videos und Webinare
  • Schulungen

Support

  • Hilfe zur Installation
  • MATLAB Answers
  • Consulting
  • License Center
  • Support kontaktieren

Über MathWorks

  • Jobs & Karriere
  • Newsroom
  • Soziales Engagement
  • Berichte von Anwendern
  • Über MathWorks
  • Select a Web Site United States
  • Trust Center
  • Handelsmarken
  • Datenschutz
  • Datendiebstahl verhindern
  • Status von Anwendungen

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Folgen Sie uns