Teaching Rigid Body Dynamics: A Combination of Symbolic and Numeric Computing
Overview
In this presentation, we’ll demonstrate how to use MATLAB to implement a Lagrangian dynamics approach for deriving equations of motion of rigid body systems. The proposed workflow incorporates tasks involving both symbolic and numeric computing – a natural combination that leads to deeper learning engagements with students.
In the first half of this session we’ll introduce the fundamental computing patterns that are needed in the derivations. In the second half of the session, these computing patterns are then applied to derive the equations of motion for a 4-LINK non-planar robotic manipulator.
Highlights
- How complex problems can be broken down into a series of smaller problems.
- How curiosity can be fostered, leading to students wanting to “create” and “do”
- Remove the tedium associated with equation derivation AND focus instead on thinking about the foundation physics of the problem.
- Immediately and easily, solve(numerically) the derived equations.
- How positive emotions to learning are fostered by a HELP/DOC system that acts as a companion during the learning and discovery process.
About the Presenter
Bradley Horton is a member of the Academic Technical Evangelist team at MathWorks, helping faculty members better utilize MATLAB and Simulink for education and research. Bradley has supported and consulted for clients on projects in process control engineering, power systems simulation, military operations research, and earthquake impact modelling. Before joining MathWorks, Brad spent 5 years as a systems engineer with the Defence Science & Technology Organisation (DSTO) working as an operations research analyst. Bradley holds a B.Eng. in Mechanical engineering and a B.Sc. in Applied mathematics.
Recorded: 19 Sep 2017
Featured Product
Symbolic Math Toolbox
Up Next:
Related Videos:
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asien-Pazifik
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)