Main Content

TransposedConvolution1DLayer

Transposed 1-D convolution layer

    Description

    A transposed 1-D convolution layer upsamples one-dimensional feature maps.

    This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer performs the transpose of convolution and does not perform deconvolution.

    Creation

    Create a transposed convolution 1-D output layer using transposedConv1dLayer.

    Properties

    expand all

    Transposed Convolution

    Length of the filters, specified as a positive integer. The filter size defines the size of the local regions to which the neurons connect in the input.

    Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

    This property is read-only.

    Number of filters, specified as a positive integer. This number corresponds to the number of neurons in the layer that connect to the same region in the input. This parameter determines the number of channels (feature maps) in the layer output.

    Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

    Step size for traversing the input, specified as a positive integer.

    Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

    Method to determine cropping size, specified as 'manual' or 'same'.

    The software automatically sets the value of CroppingMode based on the Cropping value you specify when creating the layer.

    • If you set the Cropping option to a numeric value, then the software automatically sets the CroppingMode property of the layer to 'manual'.

    • If you set the Cropping option to 'same', then the software automatically sets the CroppingMode property of the layer to 'same' and set the cropping so that the output size equals inputSize.*Stride, where inputSize is the length of the layer input.

    To specify the cropping size, use the Cropping option of transposedConv1dLayer.

    This property is read-only.

    Number of input channels, specified as one of the following:

    • 'auto' — Automatically determine the number of input channels at training time.

    • Positive integer — Configure the layer for the specified number of input channels. NumChannels and the number of channels in the layer input data must match. For example, if the input is an RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with 16 filters, then NumChannels must be 16.

    Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | char | string

    Parameters and Initialization

    Function to initialize the weights, specified as one of the following:

    • 'glorot' — Initialize the weights with the Glorot initializer [1] (also known as the Xavier initializer). The Glorot initializer independently samples from a uniform distribution with a mean of zero and a variance of 2/(numIn + numOut), where numIn = FilterSize*NumChannels and numOut = FilterSize*NumFilters.

    • 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal distribution with a mean of zero and a variance of 2/numIn, where numIn = FilterSize*NumChannels.

    • 'narrow-normal' — Initialize the weights by independently sampling from a normal distribution with a mean of zero and a standard deviation of 0.01.

    • 'zeros' — Initialize the weights with zeros.

    • 'ones' — Initialize the weights with ones.

    • Function handle — Initialize the weights with a custom function. If you specify a function handle, then the function must be of the form weights = func(sz), where sz is the size of the weights. For an example, see Specify Custom Weight Initialization Function.

    The layer only initializes the weights when the Weights property is empty.

    Data Types: char | string | function_handle

    Function to initialize the bias, specified as one of the following:

    • 'zeros' — Initialize the bias with zeros.

    • 'ones' — Initialize the bias with ones.

    • 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution with a mean of zero and a standard deviation of 0.01.

    • Function handle — Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form bias = func(sz), where sz is the size of the bias.

    The layer only initializes the bias when the Bias property is empty.

    Data Types: char | string | function_handle

    Layer weights for the transposed convolution operation, specified as a FilterSize-by-NumFilters-by-NumChannels numeric array or [].

    The layer weights are learnable parameters. You can specify the initial value for the weights directly using the Weights property of the layer. When you train a network, if the Weights property of the layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the Weights property is empty, then trainNetwork uses the initializer specified by the WeightsInitializer property of the layer.

    Data Types: single | double

    Layer biases for the transposed convolutional operation, specified as a 1-by-NumFilters numeric array or [].

    The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork uses the initializer specified by BiasInitializer.

    Data Types: single | double

    Learning Rate and Regularization

    Learning rate factor for the weights, specified as a nonnegative scalar.

    The software multiplies this factor by the global learning rate to determine the learning rate for the weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the weights in this layer is twice the current global learning rate. The software determines the global learning rate based on the settings you specify using the trainingOptions function.

    Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

    Learning rate factor for the biases, specified as a nonnegative scalar.

    The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings you specify using the trainingOptions function.

    Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

    L2 regularization factor for the weights, specified as a nonnegative scalar.

    The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2 regularization for the weights in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the trainingOptions function.

    Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

    L2 regularization factor for the biases, specified as a nonnegative scalar.

    The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. The software determines the global L2 regularization factor based on the settings you specify using the trainingOptions function.

    Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

    Layer

    Layer name, specified as a character vector or a string scalar. For Layer array input, the trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign names to layers with the name ''.

    Data Types: char | string

    This property is read-only.

    Number of inputs of the layer. This layer accepts a single input only.

    Data Types: double

    This property is read-only.

    Input names of the layer. This layer accepts a single input only.

    Data Types: cell

    This property is read-only.

    Number of outputs of the layer. This layer has a single output only.

    Data Types: double

    This property is read-only.

    Output names of the layer. This layer has a single output only.

    Data Types: cell

    Object Functions

    Examples

    collapse all

    Create a 1-D transposed convolutional layer with 96 filters of length 11 and a stride of 4.

    layer = transposedConv1dLayer(11,96,Stride=4)
    layer = 
      TransposedConvolution1DLayer with properties:
    
                Name: ''
    
       Hyperparameters
          FilterSize: 11
         NumChannels: 'auto'
          NumFilters: 96
              Stride: 4
        CroppingMode: 'manual'
        CroppingSize: [0 0]
    
       Learnable Parameters
             Weights: []
                Bias: []
    
      Show all properties
    
    

    Algorithms

    expand all

    References

    [1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.

    [2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the 2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE Computer Vision Society, 2015.

    Version History

    Introduced in R2022a