Ackermann's Function is a recursive function that is not 'primitive recursive.'
The first argument drives the value extremely fast.
A(m, n) =
- n + 1 if m = 0
- A(m − 1, 1) if m > 0 and n = 0
- A(m − 1,A(m, n − 1)) if m > 0 and n > 0
A(2,4)=A(1,A(2,3)) = ... = 11.
% Range of cases % m=0 n=0:1024 % m=1 n=0:1024 % m=2 n=0:128 % m=3 n=0:6 % m=4 n=0:1
There is some deep recusion.
Input: m,n
Out: Ackerman value
Ackermann(2,4) = 11
Practical application of Ackermann's function is determining compiler recursion performance.
Solution Stats
Problem Comments
2 Comments
Solution Comments
Show comments
Loading...
Problem Recent Solvers80
Suggested Problems
-
113255 Solvers
-
1065 Solvers
-
Fix the last element of a cell array
1756 Solvers
-
(Linear) Recurrence Equations - Generalised Fibonacci-like sequences
411 Solvers
-
Find the next Fibonacci number
905 Solvers
More from this Author308
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
Solution 15 is, to me, a novel cell array index implementation.
Efficiently to crash my Matlab.