Ackermann's Function is a recursive function that is not 'primitive recursive.'

Ackermann Function

The first argument drives the value extremely fast.

A(m, n) =

  • n + 1 if m = 0
  • A(m − 1, 1) if m > 0 and n = 0
  • A(m − 1,A(m, n − 1)) if m > 0 and n > 0

A(2,4)=A(1,A(2,3)) = ... = 11.

% Range of cases
% m=0 n=0:1024
% m=1 n=0:1024
% m=2 n=0:128
% m=3 n=0:6
% m=4 n=0:1

There is some deep recusion.

Input: m,n

Out: Ackerman value

Ackermann(2,4) = 11

Practical application of Ackermann's function is determining compiler recursion performance.

Solution Stats

259 Solutions

80 Solvers

Last Solution submitted on Feb 15, 2026

Last 200 Solutions

Problem Comments

Solution Comments

Show comments
Loading...

Problem Recent Solvers80

Suggested Problems

More from this Author308

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!