I do not feel the solution set matches the Challenge definition. The solution appears to use the delta from Pi instead of the defined estimate differential delta.
The correct answers are:
9 3.1415917732 delta=4.16658e-7
6 3.1415266183 delta=3.2042972e-5
12 3.1415926414 delta=5.693e-9
Appears the expected solution can be achieved if use T(n+1)-Tn instead of the problem definition of t(n+1)-tn. The scale factor makes a significant difference.
The error noted above has been corrected.
The pdf file link is broken.
It seems that the formula is an infinite sum of factorial(n)^2/factorial(2*n+1) (starting at zero) multiplied by
9/(2*sqrt(3)), When (current sum - previous sum) < 10^-n then we should stop the infinite sum. One expected output is the number of summands and the other is our estimated value for pi (rounded to 10 decimal places) in this order. Good luck for anyone trying.
Remove any row in which a NaN appears
6832 Solvers
Project Euler: Problem 10, Sum of Primes
710 Solvers
Basics: 'Find the eigenvalues of given matrix
324 Solvers
Output any real number that is neither positive nor negative
316 Solvers
367 Solvers
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!