Deep Reinforcement Learning for Walking Robots
From the series: Modeling, Simulation and Control
Sebastian Castro demonstrates an example of controlling humanoid robot locomotion using deep reinforcement learning, specifically the Deep Deterministic Policy Gradient (DDPG) algorithm. The robot is simulated using Simscape Multibody™, while training the control policy is done using Reinforcement Learning Toolbox™.
In this video, Sebastian outlines the setup, training, and evaluation of reinforcement learning with Simulink® models. First, he introduces how to choose states, actions, and a reward function for the reinforcement learning problem. Then he describes the neural network structure and training algorithm parameters. Finally, he shows some training results and discusses the benefits and drawbacks of reinforcement learning.
You can find the example models used in this video in the MATLAB Central File Exchange.
For more information, you can access the following resources:
Featured Product
Reinforcement Learning Toolbox
Up Next:
Related Videos:
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asien-Pazifik
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)